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Abstract— In this work, we propose a normalized Tanh activate
strategy and a lightweight wide-activate recurrent structure to
solve three key challenges of the soft-decoding of near-lossless
codes: 1. How to add an effective strict constrained peak absolute
error (PAE) boundary to the network; 2. An end-to-end solution
that is suitable for different quantization steps (compression
ratios). 3. Simple structure that favors the GPU and FPGA
implementation. To this end, we propose a Wide-activated Recur-
rent structure with a normalized Tanh activate strategy for Soft-
Decoding (WRSD). Experiments demonstrate the effectiveness of
the proposed WRSD technique that WRSD outperforms better
than the state-of-the-art soft decoders with less than 5% number
of parameters, and every computation node of WRSD requires
less than 64KB storage for the parameters which can be easily
cached by most of the current consumer-level GPUs. Source code
is available at https://github.com/dota-109/WRSD

Index Terms— NL-CALIC, soft decoding, normalized Tanh
activate strategy, lightweight wide-activated recurrent structure.

I. INTRODUCTION

IN APPLICATIONS like remote sensing, telemedicine,
Internet of things (IoT), etc., the image encoder is imple-

mented by highly integrated circuit chips. It is intractable to
update the on-chip image compression techniques for higher
image quality. Therefore, soft decoding techniques have been
investigated to improve the compressed image quality at the
decoder side while maintaining the encoder unchanged.

Soft-decoding, in fact, is an ill-pose inverse problem and the
pioneer soft-decoding techniques are based on explicit image
modeling and optimization. A lot of sophisticated image mod-
els, like auto-regressive model [1], sparsity [2], [3], random
walk graph [4], etc., are proposed for the soft decoding of
the commonly used image/video codecs. Recently, researchers
have been turned to adopt the popular convolutional neural
networks (CNNs) to build data-driven and end-to-end soft-
decoders instead of hand-crafted image modeling [5]–[12].
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Fig. 1. Performance and Parameters comparison between WRSD and other
lightweight models. “with_NTA” means the model is embedded in our NTA
framework.

Due to the larger perception field and no need for explicit opti-
mization, CNN-based soft-decoders outperform better than the
traditional model-based soft-decoder in both image quality and
executing time. Most CNN-based soft-decoding techniques
regard the soft-decoding tasks as a common image restoration
problem. This assumption works fine for the transform-based
lossy codecs like JPEG [8], [9], [11], [12], JPEG 2000 [7].
However, as we are discussing now, this assumption DOES
NOT suit the soft-decoding of the near-lossless codecs
(NL-SD).

A. Background of Near-Lossless Coding (NLC)

Before the discussion about NL-SD, a background intro-
duction of NLC is provided firstly to facilitate the subsequent
descriptions and understanding of our new work. NLC is a
special kind of lossy image compression technique. Besides
pursuing low bit-rate and high visual quality like common
lossy image codecs, the NLC techniques have an additional
objective to constrain the peak absolute error (PAE) of every
pixel. With the PAE constraint, NLC preserves the tiny weak
local features which may be faded by the common lossy image
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codecs. This makes NLC widely adopted in the scenarios like
remote sensing, telemedicine, etc.. The name “near-lossless”
comes from a straightforward NLC coding strategy that let the
encoder send a quantized version of the input image losslessly,
then lets the decoder adopt midpoint reconstruction to restore
the lossless transferred quantized image. For example, let I and
S denote the input image and the quantized image respectively.
τ is the PAE constraint parameter that the quantization step
q = 2τ + 1 and S = �I/q�. The decoder restores Î via
Î = �S × q + τ�, thus the PAE of Î is τ .

The SOTA near-lossless codec is NL-CALIC [13] which
jointly optimize the quantization and encoding process in a
predictive coding framework. The discussion of NL-CALIC is
beyond the scope of this paper, and readers can simply regard
the NL-CALIC soft-decoding process as the above image
de-quantify problem, or refer to [13] for more details of the
NL-CALIC coding and decoding process.

B. Challenges of NLC Soft-Decoding

Comparing with the CNN based soft decoder of common
lossy codecs (CL-SD), NL-SD has four challenges:

Challenge 1: How to Constrain the L∞ Bound Strictly:
The compression distortion is caused by quantization. In com-
mon lossy codecs, the quantization is launched on transform
domains like DCT or wavelet coefficients. Thus the CL-SD
tasks are always regarded as a non-constraint optimization
process. However, similar to the adaptive de-quantization
problem, the quantization of near-lossless codecs is conducted
on the pixel domain directly which restricts the peak absolute
error (PAE) of every individual pixel. In this way, from the
view of optimization, the NLC soft-decoding is a L2 opti-
mization process with L∞ constraints during the restoration
process:

Î = arg min
Î

∥∥∥Î − I
∥∥∥

2
(1)

s.t.
∥∥∥Î − I

∥∥∥∞ ≤ τ (2)

Challenge 2: One Model Per Compression Ratio: Like
every lossy codec, NLC codecs should be worked at different
network conditions. The only parameter which controls the
compression ratio of a NLC is the PAE constraint which
implies that the quantization step is 2τ + 1. In other words,
the constraint varies for different compression ratios. For
real applications, it is intractable to train a set of networks
for different quantization steps, therefore, this makes the
one-model-per-ratio tasks really challenging.

Challenge 3: The Dilemma Between Convergence and
Overfitting/Gradient Vanish: As shown in Fig. 2, the NLC
coding residual follows uniform distribution and the common
lossy coding residual follows Gaussian/Laplacian distribution.
In other words, the NL-CALIC soft decoder has to estimate
the real value from the uniform distributed candidates, which
is more challenging than estimating the real value from
Gaussian/Laplacian distributed candidates.

The challenge can be explained from the view of distribution
mapping [14]. Let us consider the soft decoding network as a
distribution mapping function whose input follows uniform

Fig. 2. Comparison of coding residuals between NLC and common lossy
codecs.

distribution and the output is the impulse distribution (the
impulse located at real value), which is the distribution of the
predicted image’s residual. To easy for understanding, here we
regard both the uniform distribution and the impulse distrib-
ution as two special Gaussian distributions whose variances
tend to be infinity and zero respectively, and the convolution
layer can be seen as a weighted average operation. In this way,
the stacked convolution layers can be explained as decreasing
the variance successively.

Generally speaking, regressing the variance from infinity
to zero requires much more convolution layers than from a
moderate value till convergence. The increase of network depth
may bring overfitting and gradient vanish problems. Therefore,
the dilemma between convergence, and overfitting/gradient
vanish makes NLC soft decoding more challenging than the
common image restoration tasks.

Challenge 4: Complexity and Executing Efficiency: Conver-
gence, overfitting and gradient vanish are only challenges for
the training process. In addition, in the implementation of the
inference process, how to squeeze extra performance from the
GPU devices to meet the system requirement of a large and
sophisticated network is a bigger headache for the engineers
like us.

C. Motivation and Contribution

The motivation of this work is to design a lightweight
NLC soft decoding network whose structure favors the current
consumer-level GPU devices and supports strict constraints
and one-model-per-compression-ratio simultaneously.

Based on the above challenges and motivation, in this paper
we propose a novel lightweight Wide-activated Recurrent
structure with a normalized Tanh activate strategy for Soft-
Decoding (WRSD) of NLC. The two main contributions of
WRSD are:

• The Normalized Tanh Activate (NTA) strategy: For
challenge 1 and challenge 2, we propose a normal-
ized Tanh activate strategy which provides restrict L∞
PAE constraints and support one-model-per-compression
ratio simultaneously. The proposed NTA structure can
be worked cooperatively with any image restoration net
backbone to easily modify the general restoration net into
NLC soft-decoder.
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Fig. 3. The proposed NTA strategy, it consists of two operations about τ , normalization and Tanh activation function.

• The lightweight wide-activate recurrent convolution
structure: We propose a lightweight wide-activated
recurrent CNN model for NL-SD to solve challenge 3 and
challenge 4. The recurrent and wide-activated structures
not only speed up the convergence of the soft-decoding
process while preventing the potential overfitting prob-
lem. In addition, all the computational nodes of the pro-
posed WRSD technique require less than 64KB storage
for the parameters which can be cached once-for-all by
most of the current consumer-level GPU device’s high-
speed cache so-called shared memory.

Experimental results show that our model outperforms better
than the state-of-the-art NL-SD method in both L2 and L∞
error. Our single network can decode multi-rate (2-10) coded
images with faster speed, more restrict L∞ constraint and
fewer parameters than [15]. Moreover, our WRSD’s weights
number is even less than CL-SD method such as ARCNN [6].
By performing soft decoding with this unique structure, the
WRSD achieves competitive performance while maintaining
efficiency.

The rest of this paper is organized as follows. The related
work is introduced in Section II. The method is proposed in
Section III. Experiments are shown in Section IV. Finally, the
conclusion is presented in Section V.

II. RELATED WORK

A. Traditional Soft Decoding Methods

In recent years, many image restoration methods have
been proposed in the academic community to restore coded
images [3], [4], [16]–[25]. These methods use transform
coding or many kinds of image priors to obtain satisfactory
restoration results. However, as introduced in section I, these
kinds of soft decoders are not suitable for NL-SD that requires
the L∞ PAE constraint.

In the early years, there were several traditional soft
decoders for the near-lossless codec. Zhou et al. [1] proposed
a �2 based soft decoding method (named Soft CALIC) of
�∞−decoded images, which shifted the task of improving
the coding performance from the encoder to the decoder.
In Soft CALIC, images are first compressed by NL-CALIC,
and then a PAR-model-based soft decoding is applied on
recovering images. This method greatly improved the low bit
rate performance of near-lossless compression by regularizing

the quantization error. However, such an AR-based model is
inferior to CNN-based models when solving data-driven image
problems, the latter usually achieve better visual qualities
(Fig. 15∼Fig. 19) and objective qualities (Table. II) effects.

B. CNN Based Soft Decoding Methods

With the emergence of convolutional neural networks, deep
learning is increasingly applied to image problems [26]–[29].
As far as we know, there are also several CNN-based soft
decoding methods.

For CL-SD, Dong et al. [6] formulated a simple network
for reducing compression artifacts; Wang et al. [30] intro-
duced a Deep Dual-Domain model combined with both
JPEG prior knowledge and sparse coding expertise, restoring
JPEG-compressed images fast; He et al. [7] proposed a series
of CNNs to performance JPEG-2000-compressed images at
different coding bit-rates; Chen et al. [8] developed a dual
pixel-wavelet domain deep CNNs-based soft decoding network
for JPEG-compressed images; In [9], a deep wide-activated
residual network was proposed to reduce blocking and
color bleeding artifacts for colorful JPEG-compressed images;
In [31], a JPEG compression artifacts reduction algorithm
based on DCT coefficients prediction was proposed; In [32],
Zini et al. proposed a deep residual auto encoder exploiting
Residual-in-Residual Dense Blocks to remove artifacts in
JPEG compressed images. In [33], a wavelet-supervision CNN
with a large receptive field is proposed to solve the distortion
of coded images.

For NL-SD, in 2019, a �∞−constrained CNN model
was proposed for near-lossless compressed image restoration.
Zhang et al. [15] used GAN to restore the near-lossless coded
images by incorporating �∞−constrained loss in training
loss. Regretfully, such a deep 16-layer and 4.5MB-parameter
GAN model is only suitable for low bit rate (6,8,10) coded
images rather than high bit rate (2,3,4) that is more important
and complicated in the restoration of the near-lossless coded
image. Besides, as a kind of weak constraint, �∞−constrained
loss function is not sufficient to limit the restored interval of
the coded image effectively.

C. Wide-Activated Identity Mapping

The proposal of Residual Network [34] makes the structure
of the network deeper and deeper. In [35], a series of residual
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Fig. 4. Our residual block’s structure.

blocks were studied and a 1000-layer-deep ResNet was pro-
posed. In [36], Wu et al. analyzed the architecture of ResNet
and designed a set of corresponding shallow networks with
the results outperformed better than the previous deep residual
networks. In [37], a wide residual network named WRN was
proposed and achieved state-of-the-art on several datasets,
indicating that the main advantage of residuals lies in residual
blocks rather than depth. For instance, by adding more feature
planes in each residual block, a wide 16-layer deep network
actually has the same accuracy as a 1000-layer thin deep net-
work. Nowadays, wide-activation based network was widely
used in various image fields such as super resolution [38],
deblocking [9] and restoration [10], [31]. The BPG/JPEG
compressed images have been significantly restored in [10],
[31] and the methods proposed in [9], [38] achieved state-of-
the-art performance.

III. METHOD

In this section, we introduce our CNN-based image soft
decoding network. The NTA strategy and the lightweight wide
recurrent convolution structure will be shown firstly, then a
total network’s structure is given, finally, the loss function is
introduced.

A. The Normalized Tanh Activate (NTA) Strategy

The main idea of NTA is inspired by the well-known
ResNet. Instead of estimating the ground truth I directly from
the NLC coded version Î, NTA estimate the residuals e that:

I = Î + e (3)

Different from the common ResNet, the NLC decoded
image has a restricted constraint that e ∈ [−τ, τ ]. So the NTA
strategy estimates a normalized residual ê in [−1, 1] that:

I = Î + τ ê (4)

I/τ = Î/τ + ê (5)

If we consider the backbone network as a black-box function
F, then we get the final NTA strategy as:

I/τ = Î/τ + T anh(F(Î/τ)) (6)

The normalization operator in Fig. 3 is a common strategy
for numerical stability. The reader may get confused that the
/τ operator before the normalization seems to be a waste
operation because dividing a scalar before normalization is
useless. We would like to maintain the /τ operator because
it can be embedded into the original decoding process of

the NLC codec to avoid the mid-range dequantization of the
DPCM residuals.

It can be observed that the Tanh activation is followed by ×τ
operator ensures the restrict L∞ bound of the restored image.
In addition, since τ is the only compression ratio control
parameter in NLC and the inference network is independent
of τ , the one-model-per-compression-ratio can be achieved by
training NTA with multi-ratio-compressed data sets.

B. The Lightweight Wide-Activate Recurrent Convolution
Structure

Before the discussion of the technical details, we discuss
our consideration of the term “lightweight”.

In our understanding, “lightweight” means that the network
should favor the current GPU structure with a small number of
parameters, highly memory access efficiency, simple schedul-
ing and fast executing time, which can be summarized as the
following three aspects:

• The structure should be as simple as possible with mini-
mized skip connections since every skip connection path
requires large memory to buffer the intermediate feature
map. (DenseNet is the most typical bad case)

• The structure should be as uniform as possible with
minimized branches because branches will significantly
increase the scheduling and synchronization time of the
GPU. (inception and multi-scale attention are two typical
bad examples)

• The number of parameters should be less than 64KB,
or the computational task can be divided into several
sub-tasks whose number of parameters is less than 64KB.
This is because, in most of the current GPU devices, every
stream process contains only 64KB high-speed cache
so-called shared memory.

Now we consider challenge 3 which is the dilemma between
convergence and overfitting. As we mentioned before, the
NL-SD can be regarded as a distribution mapping prob-
lem that from infinity-variance Gaussian (uniform) distribu-
tion to zero-variance Gaussian distribution (impulsive). The
regression of variance from infinity to zero requires multiple
weighted average operators which implies a very deep neural
network.

1) Why Recurrent CNN: Our main idea to simplify the
potential very deep network is to use recurrent CNN structure
which is borrowed from the DRCN [39]. Comparing with the
common stacked CNN structure, the recurrent CNN structure
has four advantages: 1) A significant reduction of the para-
meters which imply a strategy to reduce the model capacity
for better generalization performances. 2) The reception field
increases with every iteration which implies a multi-scale fea-
ture extraction. 3) A coarse-to-fine regression process which
can be easily pruned to meet the different system requirements.
4) Reuse of the parameters can significantly reduce the data
loading time since the parameters just need to be cached once.

However, the sophisticated recurrent CNN structure in
DRCN is quite unfriendly to the GPU implementation because
of the plenty of skip-connections and the multi-scale attention
branches. This makes us investigate a more uniform recurrent
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Fig. 5. Our network’s structure. It consists of three parts: extraction part, recurrent inference part and reconstruction part. The unfold recurrent inference
part is shown in Fig. 6.

TABLE I

COMPARISONS BETWEEN WRN AND WRSD

Fig. 6. The recurrent inference part can be regarded as stack of several
blocks, here we use the same filter to recurrent 12 times.

structure to favor the GPU architecture and speed up the
convergence of recurrent CNN.

2) Why Lightweight Wide-Activated: To accelerate the con-
vergence, the recurrent CNN should contain sufficient weight-
ing average operators which imply large convolution kernels.
There are two ways to enlarge the convolution kernels: enlarge
the spatial support or enlarge the channels. Theoretically, there
are no differences between the two ways. However, to fully
explore the high-speed cache of GPU, every convolution
layer should be less than 64KB (the maximal kernel size is
3 × 3 × 42 × 42 for a single-precision floating-point ).

Therefore, we choose to enlarge the channels of the con-
volution kernel instead of the spatial support. Guided by
the two well-known concepts “expand & squeeze” and “sep-
arable convolution”, we modify the wide-residual-network
(WRN) [37] to a new lightweight wide-activated version which
we call the Wide-Recurrent-Soft-Decoding (WRSD) network.
The backbone network of WRSD is compared with the original
WRN in Table. I. Both the two methods are tested under the
Pytorch-GPU framework, and the GPU device is GTX 1050Ti.

To be specific, as shown in Fig. 4, the proposed WRSD
backbone network has three sub-layers, and the memory cost
of every sub-layer is less than 64KB. The first two layers form
a simple wide-activated structure that uses 1 × 1 convolution

Fig. 7. Different recurrent-based structure. Obviously, the WRSD’s recurrent
structure is simple and efficient.

Fig. 8. Ablation study of NTA strategy under Kodak PhotoCD Dataset,
WRSD_mse doesn’t embed the NTA strategy.

Fig. 9. Ablation study of two kind of residual blocks under Kodak PhotoCD
Dataset. WRSD performs better in large PAE constraints.

kernels to expand and squeeze the feature map in the channel
domain, respectively. The third sub-layer adopts a separable
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TABLE II

AVERAGE PSNR (DB) SCORE/PAE ERROR OF DIFFERENT SOFT DECODING ALGORITHMS ON SEVERAL IMAGE DATASETS.
THE BEST AND THE SECOND SCORES ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

convolution pair to form a 3×3 spatial convolution to expand
the reception field.

Compare with the simplest 3 × 3 × 42 × 42 convolution
solution, every coefficient of the WRSD feature map involves
608 (64 + 256 + 3 × 48 + 3 × 48) weighted average operation,
which is almost the double of the simple convolution (3 ×
3 × 42 = 378). More importantly, it increases the feature map
channels from 42 to 64 which may carry more information in
every recurrent loop.

C. The Main Architecture of the WRSD

To show the efficiency of the NTA strategy, the lightweight
wide-activate recurrent convolution structure is embedded,
as shown in Fig. 5. The total model consists of the extrac-
tion part, inference part and reconstruction part, respectively.
Similar to [40], the extraction part uses one 3 × 3 conv layer
to extract n-dimensional features from coded images, where
n = 64.

The inference part finishes the prediction of error e between
I and Î by using a recurrent residual block structure. The

unfold part is shown in Fig. 6. This structure helps our model
learn e better without the need for additional new weight
parameters.

For the reconstruction part, we adopt a 3 × 3 conv layer to
decrease the channel firstly. Due to the high similarity of input
and output, we add the residual learning [34] for fast training
and convergence.

D. Loss Function

The proposed WRSD is an end-to-end optimization by
minimizing the loss function:

LSU M = L M S E + λ

2
‖W‖2 (7)

where the L M S E is Mean Squared Error (MSE) loss, ‖W‖2 is
the L2 regularization of weights parameters to prevent over-
fitting, λ is hyper-parameter.

1) MSE Loss: Our MSE loss has the following form:

L M S E = 1

2Rows × Cols

Rows×Cols∑

i=1

∥∥xr
i − xi

∥∥
2 (8)
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Fig. 10. Residual visualization of each recurrence in WRSD under Set5 dataset.

TABLE III

ABLATION STUDY OF NTA STRATEGY UNDER KODAK PHOTOCD
DATASET, PSNR (DB) IS USED TO EVALUATE THESE METHODS. THE

BEST SCORE IS HIGHLIGHTED IN BOLD

in which xr
i = F(yi ; wi ; bi) is the pixel of restored image

Ir by the WRSD model, wi and bi are part of W. MSE
loss is widely used in a variety of image tasks and pursue
the minimization of error energy while may not restrict error
distribution. So we incorporate NTA strategy that has been
described before to prove a high similarity in distribution.

E. Activation Functions

In our work, there have three kinds of activation functions,
they are ReLu [43], ELU [44] and Tanh respectively. Firstly,
the Tanh is adopted to constrain the error e that predicted by
the CNN model; Secondly, due to the ReLu’s gradient being
easy to compute, it’s used to guarantee the block’s nonlinearity

TABLE IV

COMPARISON OF AVERAGE PSNR (DB) AND MAXIMUM RESTORATION

BOUNDARY BETWEEN OUR METHOD WRSD AND �∞−CNN [15].
THE BEST SCORE IS HIGHLIGHTED IN BOLD

and fast convergence during training; Finally, ELU can ensure
that negative values are still activated, so it’s used to extract
features in the Extraction part.

F. Distinction Between WRSD and Other Recurrent Structure

Similar to DRCN [39], DRRN [41] and other CNN-
based methods, we use recurrent structure to reduce params.
For WRSD, there are still two differences with other
recurrent-based CNN methods.

1) A Purely Recurrent Structure: Many recurrent-based
CNN methods follow complicated structures that are shown in
Fig. 7(a) and 7(b). DRCN [39] feeds each recurrence’s output
to the end; DR-RseNet [42] recurrently infers the stack block’s
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Fig. 11. Comparison between DRRN’s and WRSD’s recursive block.
DRRN’s conv kernels are not completely shared. For WRSD, all kernels in
the block are totally shared and kernel sizes are small.

Fig. 12. Comparison between DRRN and WRSD’s recurrent way, network’s
structure have been simplified.

output. However, for WRSD, the architecture is consists of a
purely recurrent structure, which has no redundant residual
connections or stack structures.

2) Global Shared Weight Params: To improve performance,
some conv kernels in the recurrent blocks may not be shared.
For example, as shown in Fig. 11, the DRRN’s recursive block
consists of three kernels, the first of which is not shared. For
WRSD, though there are four kernels in a recurrent block,
most of them are small size kernels and all of them are totally
shared.

Besides, DRRN’s shared kernels only occur in the block.
As shown in Fig. 12, though DRRN recursively restores
the images, it is more like a stack-based CNN. However,
for WRSD, the recurrent block’s params are totally the
same, which can be called a global totally shared recurrent
CNN.

Fig. 13. Executing time comparison between WRSD and other methods.

Fig. 14. Comparison of network FLOPS.

IV. EXPERIMENTS

Experimental results are presented to verify the effec-
tiveness of our soft decoding method in this section. The
WRSD is compared with some lightweight models, including
ARCNN [6], SRCNN [40], FSRCNN [45], PAN [46], Shuf-
fleNet [47] and GhostNet [48]. Soft CALIC [1] and MIR-
Net [49] are listed for reference. Soft CALIC is a traditional
method; MIRNet is the baseline model. Noting that these CNN
methods are trained on the same dataset as ours, and follow
the same training way as WRSD.

A. Dataset

The database DIV2k is used for training our soft decoding
network, it has 900 images about resolution 2K ×1K in total.
Here we set the batch size and patch size to 36 and 128,
respectively. Kodak PhotoCD dataset, Set5, Set14, BSD100,
LIVE1, Manga109, Urban100 and aerial image set are used
as the test dataset. Set5, Set14, BSD100, Urban100 and
Manga109 are popular datasets in the image super-resolution
field, Kodak PhotoCD dataset has 24 images with resolution
768 × 512. To compare with �∞−CNN [15], we add LIVE1
and aerial image set as another test datasets. LIVE1 dataset
has 29 images and most of them are the same as the Kodak
PhotoCD dataset. The aerial image dataset has 180 remote
sensing images with resolution 5000 × 5000. To keep consis-
tency with others, we transform BSD100 and LIVE1’s image
format from “.jpg” and “.bmp” to “.png”, respectively. The
proposed WRSD is trained with single-channel images, but it
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Fig. 15. Visual comparisons for PAE = 10.

can be easily applied to RGB images. NL-CALIC codec [13] is
used to generate coded images at different quantization steps.

We compare the performance of these algorithms in the case
of τ = [2,10].
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Fig. 16. Visual comparisons for PAE = 10.

B. Training Details

Our WRSD’s block loops 12 times, and most of the kernel
sizes are 1 × 1, the number of parameters is only 46433, even
less than ARCNN [6]. We randomly mix the training set with
different quantization steps in each batch. Data augmentation
is used for generating more training images. The learning rate
is initialized to 5e-4, and it will be decreased if valid PSNR
is not improved in 10 epochs. The minimum learning rate is
1e-5 and the learning rate decay is 0.5, the training epoch is
set to 150. Training GPU device is RTX 2080Ti.

C. Ablation Study

1) The NTA Strategy: The ablation study of normalized
Tanh function is shown in Fig. 8. WRSD means the originally
proposed method, WRSD_mse means the WRSD without
adopting NTA strategy. With the help of NTA strategy, the
WRSD achieves better PSNR restoration and more strict PAE
constraints.

2) Lightweight Wide-Activate Residual Block: To show the
efficiency of the proposed lightweight wide-activate residual
block, we compare it with the original residual block of
WRN, both the above residual blocks’ structures are shown in
Table. I. From Fig. 9 we can know that WRSD has the same
performance as WRN and even performs better in large PAE
constraints while its parameters are much less than WRN’s.

3) NTA With Lightweight CNNs and Baseline Model: For
a more comprehensive ablation study, we also embed these
CNN methods into the proposed NTA structure. For fairness
of the compression, all these methods are constrained into
[−0.7τ, 0.7τ ] as same as the proposed WRSD technique, thus
all of the CNNs are with the same PAE constraints and we only
show the PSNR performances. The performances are listed in

Table.III. It can be observed that taking advantage of the strict
L∞ constraint of NTA, most CNN+NTA techniques perform
much better than the original CNNs. There is no doubt that
the effectiveness of NTA has been proved.

4) WRSD-L, a Low-Profile Version: We propose a
low-profile version of WRSD to favor low-end graphics whose
shared memory is less than 48 KB, namely WRSD-L. The
WRSD-L has only 39 KB by reducing the channels of WRSD
from 64-256-48-48-64 to 16-64-12-12-16. The efficiency of
WRSD will be verified from the comparisons of parameters,
executing time and network FLOPS (NFLOPS). A detailed
comparison please refer to the following sections.

D. Visualization of Recurrence

To further explain the decoding process of WRSD,
we visualize the soft-decoding residuals after each recur-
rence. As shown in Fig. 10, as the increase of recurrence,
the power of residual decreases and the residual pattern is
turning to totally random noise gradually. This means that the
soft-decoded images are turning to the original images after
every recurrence. The PSNR results in Fig. 13 also prove this
result.

E. Objective Quality Comparison

Table. II reports the PSNR assessment score achieved by
all tested algorithms. It can be observed that the WRSD
outperforms better than all the lightweight methods on most
τ coefficients, and remains competitive performance when
compared to MIRNet. These demonstrate the effectiveness of
the proposed WRSD. Besides, the Urban100 and Manga109
datasets are also used to further evaluate the performances
of WRSD. We compare WRSD with two SOTA lightweight
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Fig. 17. Visual comparisons in coloful image (kodim12 in Kodak PhotoCD
dataset, τ = 10). From top to bottom are the original image, NL-CALIC-
coded image (PSNR/SSIM), GhostNet-decoded image (36.77/0.9772), PAN-
decoded image (36.50/0.9758), MIRNet-decoded image (36.92/0.9780) and
WRSD-decoded image (37.64/0.9816), respectively.

methods and MIRNet on τ = [2,10] and [12,16], as shown in
Table. V. PAN is a SOTA lightweight super-resolution method,

TABLE V

COMPARISON OF AVERAGE PSNR (DB) AND MAXIMUM RESTORATION
BOUNDARY BETWEEN OUR METHOD WRSD AND PAN [46],

GHOSTNET [48] AND MIRNET [49]. THE BEST SCORE

IS HIGHLIGHTED IN BOLD

TABLE VI

CNN METHODS’ PARAMETERS COMPARISON (KB)

GhostNet performs competitive accuracy in NL-SD, MIRNet
is our baseline model. Obviously, WRSD outperforms better
than these three SOTA methods. Besides, WRSD also per-
forms well in coefficients [12,16] that have not been trained.

Moreover, we compare WRSD with �∞−CNN [15] which
is shown in Table. IV. Same as [15], we use LIVE1 and a
set of aerial images as test images. In general, our model has
better PSNR, lower PAE, and competitive SSIM.

F. Visual Quality Comparison

Another important goal of the soft decoding algorithm is
to restore images with high visual quality as NL-CALIC-
compressed images usually have severe block artifacts at high
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Fig. 18. Visual comparison in colorful image (UchiNoNyansDiary_000 in Manga109, τ = 10). From upper left to lower right are the original image,
NL-CALIC-coded image (PSNR/SSIM), PAN-decoded image (36.57/0.9806), GhostNet-decoded image (36.78/0.9804), MIRNet-decoded image (36.95/0.9809)
and WRSD-decoded image (38.33/0.9816).

PAE. Therefore, some soft decoded images with different
methods at τ = 10 are shown in Fig. 15 and Fig. 16 for visual
quality evaluation. In general, images restored by WRSD
are more visually pleasing than other methods. In addition,
to prove the proposed WRSD still performs well in color-
ful images, we compare it with SOTA lightweight methods
and baseline model: PAN, GhostNet, and MIRNet. Fig. 17,
Fig. 18 and 19 prove that WRSD also performs well in colorful
images.

G. CNN Parameters Comparison

Due to adopting the recurrent structure and 1×1 convolution
kernel, our WRSD achieves state-of-the-art near-lossless coded
images’ restoration while taking up very little storage space.
The comparison results of all parameters are shown in Fig. 1
and Table. VI. Obviously, WRSD achieves SOTA performance
while parameters are competitive. For the low-profile version

of WRSD, has only 39 KB, and is also better than most light-
weight competitors. Besides, benefited from the NTA strategy,
other methods also achieve at least 0.5 dB improvements,
which verifies the efficiency of NTA framework.

H. Executing Time Comparison

Firstly, let us show the comparison results of executing time
before and after acceleration. As shown in Tab. VII, after
acceleration, both the two versions of WRSD largely improve
the speed. Besides, we provide a comprehensive comparison of
executing time, as shown in Fig. 13. Since the WRSD restores
images recurrently (12 times), the executing time consumption
is consists of 12 points. For the low-profile version of WRSD,
it achieves the fastest speed with only a few dB losses. Besides,
WRSD is more flexible because of its recurrent structure.
One can choose recurrent times based on the trade-off of
performance and executing time.
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Fig. 19. Visual comparison in colorful image (img_096 in Urban100, τ = 10). From upper left to lower right are the original image, NL-CALIC-coded image
(PSNR/SSIM), PAN-decoded image (35.59/0.9844), GhostNet-decoded image (36.01/0.9859), MIRNet-decoded image (36.57/0.9864) and WRSD-decoded
image (38.12/0.9904).

I. Network FLOPS Comparison

Except for the comparison of parameters and executing
time, in this section, we adopt a new metric to evaluate

networks’ performances, which is the network FLOPS
(NFLOPS). FLOPS means the floating-point operations per
second. Simply put, the larger the FLOPS, the better the
method. The comparison of NFLOPS is shown in Fig. 14.
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TABLE VII

COMPARISON OF EXECUTING TIME (MS) BEFORE
AND AFTER ACCELERATION

As we can see, compared with other light-weight methods,
both the two versions of WRSD have much larger NFLOPS,
which verifies the efficiency of WRSD.

V. CONCLUSION

In this paper, we propose a novel near-lossless soft-decoding
network via normalized Tanh activate (NTA) strategy and a
lightweight wide-activate recurrent convolution structure. The
proposed WRSD techniques achieve the SOTA soft-decoding
performances with a simple and GPU-favored structure.
Firstly, the NTA strategy supports the strict L∞ constraints
and one-model-per-compression ratio simultaneously and can
be worked cooperatively with any backbone network. This
property made NTA strategy a generalized structure for all
the L∞ constrained scenarios like HDR imaging, image
re-quantization, and image denoising of dark current noise.
In addition, the lightweight wide-activate recurrent convolution
structure, as an alternative structure for the stacked CNN
structure, has the potential to be extended to the other low-level
visual tasks like super-resolution, denoising. Due to its sim-
ple structure, efficient cache capability and flexibility time-
complexity control, it is quite friendly for the SOC design.

However, it should be noticed that the current recurrent
CNN structure seems only suitable for low-level visual tasks,
we already did some attempts to extend the recurrent CNN
structure to high-level visual tasks like image recognition, the
performance is quite negative. This may be because high-level
visual tasks need the extraction of semantic level features
which implies large model capacity. The knowledge distillation
and multi-level recurrent maybe two directions in our future
work.
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